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S U M M A R Y  
In the standard treatments for anisotropic shells based on the Kirchoff hypothesis, it is necessary to make certain 
restrictions on the type of anisotropy and the resulting theories involve only six elastic constants. 

In the present work, a shell theory is obtained by an "asymptotic" or "perturbation" method which does not require 
any restriction on the anisotropy. 

It i~ found that, in those cases in which the extensional and bending strains are of the same order of magnitude, 
the leading terms satisfy the classical equations and depend only or/the same six elastic constants. 

It is seen however that in some cases the full anisotropy is significant and it is shown that in the extension of a 
plate the anisotropy can produce displacements normal to the plate. 

Introduction 

In the standard treatments of anisotropic shells (e.g. Ambartsumyan [1] ) the assumption is 
made that the mid-surface of the shell is a surface of elastic symmetry. This assumption then 
leads to theories which involve only six of the twenty-one distinct components of the elasticity 
tensor. 

In recent work by Widera and Johnson [2, 3] an asymptotic method is used to develop 
fully anisotropic non homogeneous dynamic theories for plates and for cylindrical shells. One 
important conclusion of this work is that even without any assumption of elastic symmetry, 
the governing equations still contain only the same six components of the elasticity tensor as 
the standard treatments. Thus the assumption of elastic symmetry is not necessary in these 
cases. 

In the present work, which is an asymptotic investigation of the statics of a general anisotropic 
shell, the same conclusion : that an assumption of elastic symmetry is not necessary, is obtained 
in cases where the extensional and bending strains are of the same order of magnitude. 

In section 3, however, cases in which the extensional and bending strains are of different 
orders of magnitude are examined and it is found that in these cases, full anisotropy may play 
a significant role. The equilibrium equations obtained in section 3 are believed to be new and 
they indicate that: 

(1) Extension in an anisotropic plate or shallow shell may be accompanied by bending of a 
smaller magnitude. 

(2) Bending in an anisotropic plate or shell may be accompanied by extension of a smaller 
magnitude. 

The present work also indicates that the error in an anisotropic theory will generally be  
larger than that in a corresponding isotropic theory. 

In their papers [2, 3] Johnson and Widera develop the theory in terms of the displacements 
making assumptions on the order of magnitude of the various components 6Lthe displacement 
vector. Johnson and Widera do not investigate all possibilities since they are concerned with 
specific cases. Because the present work deals with statics, it is not necessary to use the dis- 
placements and the theory is developed from the point of view of the strains. The disadvantage 
of using ithe strains is that compatability equations must be included in the theory but it is felt 
that this is outweighed by the fact that the scaling of the strains is much easier than that of the 
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displacements and that the extensional and bending strains are easily identified, so that different 
orders of magnitude for these strains may be considered. 

A further advantage is that an extension to a nonlinear small strain case is made much 
simpler by the use of the strains rather than the displacements (e.g. Westbrook [4]). The 
relationship between the displacements and the strains is given at the end of section 3. 

1. Coordinates and Scaling 

It is assumed that the strains eii are everywhere of magnitude e or less. 
Let Xl, x2 be curvilinear coordinates in the mid-surface of the shell and x3 be the coordinate 

perpendicular to the mid-surface. The surfaces of the shell are then given by x3 = _+ h. The 
coordinates are scaled as follows : let ~ = x J L  (a = 1, 2) where L is a typical length which 
depends on the boundary data and shell geometry and let ( = xa/h. The curvature tensor B~r of 
the mid surface is scaled by a length R to give the scaled curvature tensor K~p = R B ~  and a 
scaled surface Christoffe! symbol F}~ is defined by 

F ~  = ~RAX ~ (A~p,~+ A ~ , p - A ~ , ~ ) .  

(Here and in what follows, the comma denotes partial differentiation.) 
If the length R is determined in the manner of John [5], the dimensionless quantities K~a, F~7 

are O(1). 
If the constitutive equations are 

~ij  -~ G i j k l  tkt  , 

then the following scaled dimensionless elasticity tensor and stress tensor are defined 

~ i j k l  ~" GGijkl , "c kz = G-  1 ~kt 

w h e r e  .fkl are of the order e or less and ]2ijkl a re  of order unity or less. 
The following small parameters are defined 

h h 
6 = ~ ,  0 = ~  and y = M a x ( 6 , 0 ~ ) .  

For the present linear theory to be valid it is required that e < y4 (see 1-4] ). In what follows no 
assumptions are made about the relative magnitudes of 6 and 0 beyond the assumption 
3 > 0 (R __> L). This means that in some cases terms appearing in our equations would be as 
small as terms already omitted and could therefore also be omitted. It is felt however, that since 
only some leading terms are considered, the retention of more terms is preferable to the division 
into separate cases which is necessary if assumptions on the relative magnitudes of 0 and 6 
are made. 

2. Shell Equations 

The equations of the three-dimensional theory are: the equilibrium equations 

t i j ; j  = 0 

the compatability equations 

~ij; hk -~ ~hk; ij  - -  F~ih; k j  - -  t~kj; hi = 0 , 

and the constitutive equations 

e i j  = G i j k t t  kl . 

In these equations ";" denotes covariant differentiation. The equations of the shell theory are 
derived from these equations together with the boundary conditions, tia=�89 i) on 
X 3 =  + h .  
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In what follows the following common conventions are used; Greek letters will take the 
values 1 and 2, latin letters the values P, 2 and 3, "[" will denote scaled covariant differenti- 
ation with respect to the mid-surface metric. 

After scaling the equilibrium equations become, 

c3,~ + aer ie -  20K~ ~3e_ OK~ ~o3 = 0 (/3r (1) 

33 + ae31~+ OK~e e~ - OK: ~33 = O (~r (2) 

and the boundary conditions are 

~,3=~(Q,+_p,) on ~ = + _ 1 .  (3) 

The constitutive equations may be written 

8~fl = #~6~0 "c~a + 2#~fl~3 "c~3 + #~f133 "c 33 (4) 

g~3 = #~3ra  "cr~ - t -2#~3~3 "or3 -[-11~333 "L'33 ( 5 )  

76 73 33 
1333 : #33 r f i z  -]-2#3373q7 -]-P3333"~ (6) 

and the elasticity tensor #~ikt must satisfy the following symmetry conditions, 

#a.f173 : #fie73 : #r : #fle3~, : #73eft : #3"earl : #3~,fla 

#~333  : #3~33  : #33r : #33r162 : # 3 3 3 ~  �9 

Thus #~kt has at most 21 distinct components. 
When scaled, the compatability equations, with i=  c~, j = fl, h = k = 3, give 

Therefore 

Ga = E~a+ ~W~p +6  f~o (~3l/~+et~3[~) d ~ + O ( w  2) (7) 

where E~a, W~ which are independent of if, may be identified with the extensional and bending 
strains. 

If use is made of equation (7) the remaining compatability equations give 

e ~ e "~ [6 ~ E~] ~ -  OK,~ I/V~] = O (e74) (8) 

e "~ W~r[ e = 0 ( 8 7 2 )  (9) 

where e ~ is the two-dimensional permutation tensor. These equations are basic equations of 
any linear shell theory and are the Gauss-Codazzi equations of the deformed middle surface 
(cf. Koiter [6] ). These are basic equations in our theory. 

From the equations of equilibrium (1), (2) and the boundary condition (3), it is seen that 

~,3 = Q'+0(/35),  P ' =  O(e6) . 

!n almost all problems of practical interest, it is assumed that Q~ and U are of the same order 
of magnitude. If this is done here 

~,3 = 0(c6),  Qi = O(~a), P' = O(/3a). 

If ,=a = 0 (/36} is used in (2) it is seen that 

r 3 a = O ( w : ) ,  Q a = O ( w : ) ,  p a = o ( w 2 ) .  

The constitutive equations (4), (5) now give 

G~+r e = # , ~ , ~ ' ~ + o ( e a ) ,  ~ = # = 3 , ~ , ~ + o ( / 3 a ) .  

At this point the following assumptions on the tensor #~t  is made. The tensor # ~  may be 
expanded in powers of ~ and has the following form, 
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~ijkl = #ijkl ~ 
s=O 

where/I i.k~ are independent of ~ and all are of order one or less. 
If f ' a~  is a tensor with the same symmetries as p,p~ and such that 

then 

= N~a+~M~a+O(e5) say. (10b) 

The substitution of these expressions into the equilibrium equations (1), (2) gives 

z~3,r +3N~ala+3(M~a[a = 0 ( ~  2 or e726) = O(Max(ec~ 2, 8723)) 

z33.~ + fiz~3 i~ + OKra N ~a + O(K~a M ~a = 0 (~?*) . 

These equations are integrated with respect to ~ and the boundary conditions are then used to 
produce the following shell equations and expressions for z ~3, 

8N~ala+�89 O(e6 ~ or e726) ( l la)  

132 M~al~ a + OKra N~a + �89 + �89 = 0 (e?26) (12a) 

or ~ ( ~ ' ~ ' G ~ ) l , + � 8 9  ~ or ,~:~) (11b) 

�89 (fi~a~a I/V~)I" + OK~ r E,o + �89 + �89 i, = 0 (e?23) (12b) 

1 a i a 1 �9 r ~3 ~O +~CP +~5(1-C2)M~a[a+O(e62 or e726) (13) 

,~33 1 3 1 3 1 = ~(2 + : C e  + ~ ( 1 - C : ) ~ I ~ - ~ C ( ~ - C ~ ) M : G ,  
+ 10 (1 - C 2) K~a M ~a + O (e?2 6). (14) 

The six distinct components of ~ar~ are easily expressed in terms of the coefficients of/*ua~ a n d  
the equations (11) and (12) are seen to be exactly those of standard treatments. It should be 
emphasized here, however, that these equations have been obtained without any assumptions 
of elastic symmetry and are valid for a general anisotropic material provided that E and W are 
of the same order of magnitude. 

In cases where E and W are of different orders of magnitude our equations require further 
refinement which does lead to the introduction of other components of the elasticity tensor into 
the basic equations of the theory. 

3. Refined Equations 

One difference between the anisotropic shell equations (11), (12) and those of an isotropic 
theory is that the error terms in the present case are somewhat larger than those of the isotropic 
theory. In the present section the error terms are reduced to the same order of magnitude as the 
isotropic theory. In the process equations which will apply when E and W are of different orders 
of magnitude are obtained and it is seen that other components of the elasticity tensor enter 
the equations. 

To achieve greater accuracy it is first necessary to obtain more accurate expressions for 
e,a. This is done by the use of equations (5), (7), (10) and (13). It is seen that 

G3 = P~3ra Vra'~ 8~ + O (e6) = h~ E,~ + ~h~; Wr + O (~6) 

where h~; =/J~3~ov ~ and hence that 

+ ~C~ (h~; W,~) I ~ + �89 (h~; W,~) I ~ + O (~?~). 

Inversion of equation (4) and the substitution of (13), (14) gives, 

Journal of Engineering Math., Vol. 6 (1972) 305-312 



A linear asymptotic theory for anisotropic shells 309 

+aft v (h,3 Wa~)la-ha3 ~h~gP ' -6(1  -(2)h;g(v"~'aVCra)l,+O(e? 2) (15a) 

z =3 = �89 (O= + CP~) + �89 (1 - r162 l/V~a) [ e + O (e71) (15b) 

d ~ = o ( ~ ) .  05c)  

These expressions are substituted into the equilibrium equation s (1), (2) which are then integrated 
with respect to r The boundary conditions are applied at f = _+ 1 and the following equations 
result. 

6 (~e,a Ga)la + ~ 6z ( ~ e ,  [h~; W~] l a)ia 
- 262  (h~3 [ -v~a l/V~a] I~)]~ + 1 / ~  _ c5 (h~ Q')I~ = O(ey 26) (16a) 

w.)b+~a (~ I-h.G3 la)b+Ov g=uGa+~O& K=~(h. Wo,)la 
i ~fl ocr~?a I 3 i �9 1 2 ~fl -~oaGpho~(v w,)l~+~P +~0(2 l~+~o (h.~P~ ~=0(~r 06b) 

~3 = ~ [Q~ + fro] + �89 (I - r w,)b + a~ (i - r [~" (hT; G31a] l e 
+ ~0(I - f:)(h;~ P')Ip + ~a ~(I - r [~e'(hT; G31~ 
+h~3(v l/V~a)l,] la + 0 (W26) �9 

These equations are the refined equilibrium equations. The compatability equations may 
also be refined. The refinements may be found in Koiter [6] or Westbrook [4]. In Koiter's 
formulation the compatability equations are independent of the elasticity tensor and are thus 
exactly the same as the isotropic case. In the present notation which is the same as [4] the term 
g33 which appears in [4] as - v (E~ + f W~) must be replaced by/~33~a f=era (Era + f W~a). In the 
present work however the compatability equations (8), (9) are found to be adequate. 

The relationship between the strains E=a, W=a and the displacements Uk may be found from 
the strain displacement relations. Let Vk be scaled displacements given by 

Uk = LVk 

then the strain displacement relations for ek3 give 

1 
/)3,{ = g33 = O(g) or V 3 = V+O(e6) 

1 20 ~ . . . .  
Gz+v31~ - ~-  K~va = 2e,3 = 2h~3E,~+2(h~3 W,~+O(e6) 

hence 

vz V~-6r h~3W, r,:+O(w 2) 

where V~ and V are independent of ~. 
Ge may now be computed from the above expressions for G and V, this may then be com- 

pared with the expression already obtained and it is seen that 

0 2 
&e = ~(V~l~+ V~lj - ~ G~v+o(~ ) 
w~r = - 6Vl~  + o ( e ~ ) .  

As one would expect the compatability equations are satisfied identically by the above ex- 
pressions. 

The refined equations (16) are required only when the extensional strains E and the bending 
strains W are of different orders of magnitude. The following cases are of interest 

(A) E=O(e) W=O(e6) 0<6 3 . 
(B) e = O(~6) W =  O(~). 
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Case (A) is an extensional anisotropic shallow shell theory which could occur for example if 
the displacements are all of the same magnitude. The governing equations are 

ocefl],a 1 a ~ o:,6 a 6(v Ev~)I,+~P -r6(h~3Q )[p = O(~vz6) (17) 
1 2 oafly6 2 3 oo:fly5 az 

* 3 1 r162 1 2 ~fl a ~fl a +~P +~6Q 1~+~5 (h.3P )l=,+OK=eh~3Q = O(e? r (18) 

'52 e=e e~'~ E.d .e = 0 (~7") (19a) 

d W~[a = O(gY2) �9 (!9b) 

The difference between these equations and those of standard treatments is the coupling in 
equation (18) which suggests that bending of order 55 may accompany extension of a shallow 
shell or plate or that a normal displacement of the same order of magnitude as the tangential 
displacement may occur in the extension of a shallow shell or plate. An example of this phenom- 
ena is given in section four. 

Case (B) which is an anisotropic shell bending theory has the governing equations 

a(f,~e'aE,o)le+ �89 W~] e 2 ,8 I~)l,+~a (h~3[U~W~o]I~)le+�89 = 0(W26)... (20) 

�89 (f,=e~a W~a) i=e + �89 1 + aQ (21) 

e = (22a) 

e =~ W~, I, = O (ey:). (22b) 

The difference here is again the coupling in equation (20) which suggests that extension of 
order at least e6 may accompany bending in a shell or plate. In this case the tangential dis- 
placements would be of order 5 z times the normal displacement. 

The equations (18) and (20) are believed to be new and they indicate the role o fthe components 
of the elasticity tensor/2Uk~ other than the usual s ix/2~a in the anisotropic theory. 

4. A Simple Example of Case (A). 

To illustrate the consequences of full anisotropy we consider theexample of an infinite aniso- 
tropic plate with a circular hole at the edge of which a constant normal pressure is applied. 
It is found that the anisotropy produces a normal displacement of the same magnitude as the 
radial displacement. 

To simplify the calculations we assume that the xz plane (z is normal to the plate) is a plane 
of elastic symmetry and that the elasticity tensor has the following components referred to the 
xyz coordinate system. 

/ 2 1 1 1 1  : / 2 2 2 2 2  : 1, /21212 = �89  / 2 1 1 2 2  : - - Y  

and all other distinct/2~,va are zero. Also/2,311 = A , ,  #1322 =A2, /223*2 : B .  Of the remaining 
components/21313/22323/21333/22333 do not enter the equations and the rest are zero. It is 
seen that 

1 1 v 
1~ 1 1 . 1  = 1) 2 2 2 2  __ 6 ' 2 1 2  - -  1 ) 1 1 2 2  - -  

1 - v  2 '  2 (1+v) '  1 - v  2 " 

The radius of the hole is taken as the typical length and the relevant equations in cartesian 
coordinates are, 

N,p., = 0 

1 [vVl.14-V2 2] N12 - 1 [1/1 2+1/2 ,] N , I -  l_v21 [VI'I+vV2'2] '  N 2 2 -  1 - - v  2 ' ' 2 ( l+v~ ' ' 

M~p;~p = 0 

J o u r n a l  o f  Eng ineer in  9 M a t h . ,  V o l .  6 (1972)  3 0 5 - 3 1 2  



A linear asymptotic theory for anisotropic shells 
1 2 

M l l -  l _ v 2  [VllWvV221 + l~-~[A,N,a,,+A2N22, x+vBN12,2] 

311 

M ~ 2 -  
1 2 

l _ v 2  [ v V l l + V 2 2 ]  + ~ [vA1Nll,l+vAeN22,1+BN12, 2] 

1 1 
M12 -- M21 - ( l + v )  V12 + ~ [A1Na~,z+AzN22,2+BNI2,1] 

at infinity the conditions are N~p~0 M.~--.0 and at the hole r = ( x 2 +  y2)+= 1 the boundary 
conditions are 

P 
N~ = Ni l  cos20+2N12 cos 0 sin 0+N22 sin20 - 

E 

Nro = (N22 - N I a) cos 0 sin 0 + N~2 (cos 20 - sin 2 0) = 0 

Mr~ = Mll cos20+2M12 cos 0 sin 0+M22 sin20 = 0 

S~3 + ~--0 M,o = O, Sra = M~,~ cos O+M2~,p sin 0 

Mro = (M22-Ml l )  cos 0 sin O+M12(cos20-sin20) 

(S~3 is the resultant radial shear stress). 
The problem for N~ and V~ is uncoupled and is in fact the problem of the isotropic plate 

with a hole, which has the solution 

P ( l+v )  
v ~ -  - - ,  v 0 = 0  

E r 

P P 
N , -  Er 2, N~o = O , NoO - Er 2 

in polar coordinates. These values may now be inserted into the remaining equations and it is 
found that the solution is given by 

V= (A1-A 2+B)~P __c~ + 2(l+v)__ (A2-AI +B) P [1 
r (3+~) E Jr 

Mrr- 8P(A2-A~+B) I1 •1 
E (3 + v) ;x  - cos 30 

2P (A2- AI + B) [ 3 ~] 
Mro - E (3 + v) ~ - sin 30 

2P (Az-A1 +B)[2 ~ ~1 
Moo = + ~ -  ( 3 + v )  i_r3 - cos  3 0 .  

Thus at the edge of the hole a normal displacement 

P (I+v)(A2-AI+B) P 
(A1-A2+B)E c~ + 3(3+~) --cos30E 

is produced by the anisotropy. 

- -  - 3r cos 30 

5. Conclusion 

It is seen that the asymptotic method allows a development of an anisotropic theory which does 
not require any restrictions on the anisotropy. The use of this method indicates that the equa- 
tions found in most standard treatments with assumptions on the anisotropy are the same as 
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those found here in many cases, but that under certain circumstances full anisotropy plays a 
part. It is clear that a theory of multilayered shells or plates with full anisotropy may be 
developed by the asymptotic method if use is made of the continuity of the stresses zk 3 and the 
strains e~a (or the displacements) at the interfaces. 
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